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Statistics of Star-Shaped Molecules. 11. Stars with Homodisperse 
Side Chains 

Walther Burchard 
Institute of Macromolecular Chemistry, Uniuersity of Freiburg, 78 Freiburg i.Br., West Germany. 
Receiued January 3,1974 

ABSTRACT: The cascade theory, known to be a powerful method when dealing with random processes, has been 
extended to cover the problem of copolymeric star molecules with side chains of equal length. This has been ef- 
fected by introducing a special form of correlation between probabilities in the zeroth and n t h  generations. Analyt- 
ic formulas are derived for the apparent and true values of the weight-average molecular weight and the z averages 
of the mean-square radius of gyration and the particle scattering factor. The particle scattering factors exhibit 
characteristic upturns in Zimm plots; the upturn is increased with the number of side chains and is more pro- 
nounced for homodisperse side chains than for side chains with a random length distribution. The envelopes of the 
particle scattering factors show increasingly marked downturns a t  large angles of scatter for stiff chains, resulting 
in typical S-shaped curves in Zimm plots. Particular attention is given to the apparent and true averages of the mo- 
lecular weight and of the conformation of copolymeric stars. The results are expressed in terms of heterogeneity pa- 
rameters P and Q defined by Benoit and Froelich for block copolymers. For star molecules Q is shown to be a sim- 
ple function of P and the mass fraction of the star center, while P depends on the difference between the weight- 
and number-average molecular weight. 

The star molecules considered in the preceding paper 
(part I) are characterized by a most probable length distri- 
bution for the attached side chains. In this paper the case 
of homodisperse side chains is treated. Although this prob- 
lem was solved approximately by Benoit,’ more general re- 
lationships can be obtained by an extension of the existing 
cascade theory. To  make this intelligible a characteristic 
and slightly hidden correlation between the link probabili- 
ties in star molecules may be discussed in some detail. 

In the previous case of stars with most probable length 
distribution for the side chains three link probabilities had 
to be distinguished for the side chains: (i) the probability p 
that  an s unit of the s8ide chain is linked to another s unit of 
the same chain, (ii) t,he probability (1 - p)  that a function- 
ality of the s unit is not linked, and (iii) the probability (1 
- P)p,  that the s unit is linked to a unit c of the star center, 
where for the coupliing probability p c  = 1 has been as- 
sumed. More generally one has p , < 1, and in such a case (1 
- P ) ( 1  - p , )  indicates the probability that a fraction of (I 
- p , )  of all  linear s chains is not linked to the center. The 

fact that the one end of the side chain is attached to the 
center while the other is free implies a special correlation 
between the link probabilities. In a completely random 
process the two functionalities of a bifunctional unit are in- 
distinguishable. In this case, however, the functionality fac- 
ing the free end has the chance for a link and (1 - ,8) for 
no reaction, and the same situation holds for any other gen- 
eration of the branch that leads to the free end; the func- 
tionality facing the attached end, on the other hand, has 
again the probability /3 for a link to another s unit, but the 
alternative is now (1 - P)pc for the link probability with a 
unit of the star center, and the same situation persists for 
all higher generations of that attached branch. This type of 
correlation, which is also typical for the chain process of a 
free radical polymerization, has been accounted for in part 
I by a special labeling of the generating functions. Yet, the 
probabilities remain identical in all generations; in other 
words /3 has been assumed to be independent of the num- 
ber of s units between the center and an s unit selected a t  
random. 
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For strictly or nearly homodisperse side chains (e.g., 
Poisson distribution) such an independence does not exist. 
Here it is more effective to replace the link probabilities by 
fixed values (no fluctuation). If for these molecules a unit is 
chosen a t  random to furnish a root of a tree, a forest is 
again obtained with subforests of c-rooted and s-rooted 
trees (for an explanation of various terms and symbols 
used, see part I). However, the various s-rooted trees are 
not statistically equivalent but depend on whether the first 
unit nearest to the star center, or the end unit of the side 
chain, or say the i th  s unit, counted from the center, is the 
root. Again this strong correlation can be handled by label- 
ing the various generating functions. This leads to the fol- 
lowing generalization of the path-weighting generating 
functions. 

The Generating Function 
As before, the component for the star center is 

where the superscript (not a power index) N denotes the 
fact that a side chain of N units in length is affixed to the 
center with a probability cy. 

For the s-rooted trees the generating function is now a 
weighted sum of individual generating functions 

where the average is taken over the N different s-rooted 
trees with individual generating functions 

Here the index i in U o i  means that the i t h  s unit (counted 
from the star center) is the root of the tree. U l s p - i  and 
u lsb' - are respectively the generating functions for the 
first generation of branches with a free end and the end 
bound to the center. Evidently, if the i t h  unit is a root, 
there are N - i units on the branch with the free end and i 
- 1 units on the branch bearing the star center. 

For the first and the subsequent generations one finds 
for the c component 

For the two parts of the side chain one has the series 

Both recursions are readily solved, thus 

Combination of the eq 1-4, 7 ,  and 8 yields 

(9) 

N 
o s ~ i + ~ s ) f - l ( . ~  os@j~)(F Osrnbs ) I  (10) 

Again two superscripts are used in order to label clearly 
both ends of a path. 

2x1  j =  1 k.1 

The total path-weighting generating function is 

The mass fractions m ,  and m, follow from eq 6b of part I 
by insertion of Mnc = M ,  and M,, = NM, as the number- 
average molecular weights of the center and of a side chain, 
respectively, and the average number f = af of side chains 

(12) 
Mc cy f N M s  m, = ; ms = 

Mc + fff1V.bIs Mc + CufNizl, 

The relevant physical averages are obtained from eq 11 by 
differentiation a t  0 = 1, resulting in 

Gaussian Chains 
The z average of the apparent particle scattering factor 

follows from the set of weighting functions defined in eq 33 
or Part I (unless otherwise mentioned, all the equation 
numbers refer to this paper). If these functions are inserted 
in eq 13, one obtains 

PZ,8 .Dp(e)*1fW = ' E C { A ' f C g C 2 f C 2  + l ~ ~ g s g C f s . f C Q f P ~ }  + 

(1 - 2) (15) 
2 2, 

1 - 2, 
P 2 = 1 +  

The apparent molecular weight is found from the limit 8 - 
1 of eq 15; this limit is equivalent to Z,, - 1 and 2, - 1 
and, with these limiting operations, both P I  and Pa + N.  
Thus 

i2IW,,, = y~ l~{ iz l ,g~  + L I I s g g , g , ~ f N }  + 
M s { M s g s 2 [ ~ f i L '  + (1 - D ) N ]  + iZ.I,g,g,} (16) 

Insertion of eq 36 of I in eq 13 gives the z average of the 
mean-square radius of gyration: 
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Stiff Side Chains 

obtained now with the set of eq 44 of I 
An equation for the apparent particle scattering factor is 

where 

Y,, = z,, [ (1 + C p , X z ) ~  - 
z c s  

1 cp,Z, ( l  - 2 , N )  - N(1 - Z,)Z," 
6 (1 - ZsN)2 

[(l + 
CP 2, 
3 (1 - 2,)2 

Y,, = (1 + cplx;)P, - 3 

The functions X 2  and 2, are given by eq 41 of I, Cp, and 
Cp, by eq 42 of I, and P I  and P2 by eq 15; the other sym- 
bols have the same meaning as before. 

Finally, for the apparent mean-square radius of gyration, 
one finds from eq 50 of I and eq 13 

The first term is given by eq 17 and the correction term is 

with 

The constant C1 is defined in eq 49 of I. 

Results and Discussion 
A few conclusions from the results obtained in I and in 

the preceding sections of this paper are discussed here. 
Effect of the Chain Number, Chain Length Distri- 

bution, and Chain Stiffness. Figure 1 shows the recipro- 
cal particle scattering factors as a function of h 2  ( S 2  )= for 
some stars with point centers. All particle scattering factors 

hi ( S i ) z  

Figure 1. Reciprocal particle scattering factors of star molecules 
with 4 and 20 branches, respectively. The broken lines refer to ho- 
modisperse branches and the solid ones to branches with most 
probable length distribution. Curve f = 4 represents behavior of an 
assembly of stars with a maximum number of 20 branches but an 
average of 4 branches. 

exhibit the same initial slope of an upturn a t  large 
values of the abscissa is more pronounced for stars with ho- 
modisperse side chains than for side chains with a most- 
probable length distribution. A similar relationship is 
found for homodisperse linear polymers and for those with 
the most-probable distribution, although in this case the 
upturns are rather less pronounced. The upturn is also en- 
hanced by increase of the number of side chains. This be- 
havior is typical of the effect of branching but is often su- 
perimposed on an opposite effect due to polydisper~ity.2-~ 

The curves with an average number 7 = af = 4 are of 
special interest. Here the functionality is f = 20 but only 
20% of the reactive groups of the center have reacted. The 
particle scattering factor shows behavior similar to that of a 
star with exactly four side chains, but is not identical with 
it because of the variation in chain number of different 
stars in the assembly. This observation suggests a test for 
uniform grafting. 

The effect of chain stiffness is seen in Figure 2 for the ex- 
ample of stars with 20 side chains. The chain stiffness is 
characterized by the parameter l /q which indicates the 
number of repeat units per persistence length.. While for 
Gaussian chains ( l / q  = 1) a continuous upturn is observed, 
the corresponding particle scattering factors of stiffer 
chains show the typical downturn behavior of stiff chains 
in general.5-7 As long as the chain stiffness is not too high, a 
characteristic S shaped curve is obtained, as confirmed ex- 
perimentally.8 In such cases an easy determination of the 
chain stiffness will be possible; for chains with more than 
100 bonds per persistence length, however, the downturn 
due to chain stiffness sets in so early that difficulties of in- 
terpretation similar to those for stiff linear chains5-; will 
occur. 

Copolymeric Stars. If the star center is comparable in 
size and mass with the mean-square radius of gyration of a 
side chain and the total mass of all grafted side chains, the 
star has to be considered as a copolymer, especially if the 
center (microgel or latex particle) and the side chains have 
different refractive index increments. 

Figure 3 shows the influence of the refractive index in- 
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Figure 2. Effect of chain stiffness on the reciprocal particle scat- 
tering factors of star molecules bearing 20 branches. The figures 
denote the number of repeat units per persistence length. 

crements on the particle scattering factor for a star with a 
large center (M, /M,  = lo5, b,/b, = 50, DP,, = lo4). In 
curve a both center and side chains have the same dn/dc. 
The scattering behavior is almost competely determined by 
the spherical center. Only at small angles are steeper in- 
creases of P(e1-l found and these are due to the mean- 
square radius of gyration of the whole molecule being larg- 
er than that of the center. No detailed information can be 
gained from such scattering curves. In curve b the refrac- 
tive index increment of the center is vc = 0; it follows then 
from eq 28 for this star that v, = 1.5. Light is not scattered 
by the center; the star resembles a “ghost star” where the 
side chains appear to be grafted onto the surface of an in- 
visible sphere. Such a star should behave as if it  had the 
same number of side chains but a point center. Comparison 
with curve d shows that this is indeed the case. 

Very strange scattering behavior is obtained if the re- 
fractive index of the solvent lies between those of the two 
components, because then v, and v. differ in sign. Positive 
and negative terms now appear in the sum of eq 45 in I and 
of eq 19; the conflicting effects make an interpretation of 
the scattering curve very difficult. Curve c gives an exam- 
ple; it is tempting, but unsafe, to correlate the maximum 
with a characteristic length within the star molecule; clear 
information on the molecular structure can scarceIy be 
gathered from such curves. Benoit and Froelichg discuss in 
their treatment of light scattering from block copolymers a 
case with an apparent negative mean-square radius of gyra- 
tion. Such a case will also occur for these star molecules if 
as may be seen from eq 17. 

g , g c ( ~ ~ ~ , ~ . f ~  + nz,Mc)(Glo + (S2)o, + (s2)os) > 
g,2m,M,(G20 + 2(S2),,) + gc2mcMC2 (S2),, (24). 

Apparent Molecular Weight and Mean-Square Ra- 
dius of Gyration. The apparent and true weight-average 
molecular weights are related by the simple equation 

M,,,, = M ,  + ( D I ~  - fiq(g,2 - 1) (25) 
where for homodisperse side chains 

Mw - M, = (1 - a)NM,m, (264  

2 5 0  

2 0 0  

1 5 0  

pzce)-’ 

100 

50 E 

l 
2 0  6 0  8 0  1 0 0  120 
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Figure 3. Scattering behavior of copolymer stars composed of a 
large center and 20 homodisperse branches. (a) Central unit and 
repeat units of the branches have the same refractive index incre- 
ment; (b) refractive index increment of the center is zero, i.e., the 
refractive index of the solvent equals that of the star center; (c) re- 
fractive index of the solvent is between the refractive indices of the 
two components; (d) scattering behavior of a corresponding star 
with point center. 

and for polydisperse side chains 

Thus, for homodisperse star molecules the correct molecu- 
lar weight is obtained in any case, while for stars with poly- 
disperse side chains the additional term in eq 25 does not 
vanish even if LY = 1. This is in agreement with the well- 
known results of Bushuk and B e n ~ i t . ~ J ~  These authors ex- 
press the relationship between Mw,app and M ,  quite gener- 
ally by two heterogeneity parameters P and Q 

+ 2P(gs - g,) + Q ( g ,  - 9,)’ (271 
where Q is a quantitative measure of the heterogeneity in 
composition, while P is related additionally to the molecu- 
lar heterogeneity. For instance, one has P = 0 if the copoly- 
mer is homodisperse in mass, but Q # 0. 

Equation 25 can also be brought into the general form of 
eq 27 with the heterogeneity parameters 

Mw,app = 

P = (AIw - ‘2fn)m, ( 2 8 4  

Q (AIIw - I’LI,,)wz,~ = PWI, (28b) 
and 

Equation 28b indicates that for stars the heterogeneity in 
composition is directly related to the heterogeneity in 
mass. Because of this direct proportionality only two mea- 
surements in solvents with different refractive indices are 
necessary for the stars, instead of the three solvents re- 
quired in the general case of eq 27. 

For practical reasons, it is advisable to select properly 
chosen classes of solvents. In the one class the solvent 
should have a rather low refractive index. Then vc and us 
are comparatively high and the difference between M ,  and 
Mw,app is small and can often be neglected. In the other 
class the solvent should have a refractive index very close 
to that of the central unit so that vc becomes zero. If, in this 
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Figure 4. Apparent and true mean-square radii of gyration as a 
function of the apparent or true molecular weight of 20-star mole- 
cules. Solid lines correspond to branches with most-probable 
length distribution and broken lines represent homodisperse 
branches. The calculations are performed for M,/M, = lo5 and 
bc/b, = 50. 

case, us is used instead of the average index increment v, the 
molecular weight and the mean-square radius of gyration 
of the grafted side chains are obtained (because m, cancels 
out). Figure 4 shows the dependence of the mean-square 
radii of gyration on the molecular weight for the two cases. 
The dotted lines correspond to the homodisperse stars, 
while the full lines give the behavior of stars with polydis- 
perse side chains. As expected, the mean-square radii of 
the polydisperse stars are larger than those of the homo- 
disperse stars of the same molecular weight. 

The larger apparent mean-square radii of gyration in sol- 
vents in which the star center is not visible appear surpris- 
ing, but this behavior has a simple explanation. The two 
lines for the homodisperse and polydisperse stars end in a 
common point indicated by the open circle in Figure 4. 
This point represents the mean-square radius of gyration 
of 20 small repeat units of type s distributed a t  random on 
the surface of the invisible sphere of the center and resem- 
bles, in some respects, a hollow sphere. The full circle in 
Figure 5 ,  however, represents the mean-square radius of 
gyration of the same 20 units distributed on the surface of a 
visible sphere. Sincie for a hollow sphere (S2) = r 2  l 1  is 
larger than for a compact sphere, (S2) = 3/5 r 2  12, of the 
same radius r, it  is clear that  there should be a similar dif- 
ference for the two star models. This difference disappears 
for very long side chains because then the mass and the size 
of the center are negligible compared with the mass and 
size of the grafted side chains. 

The g Factor. Branching in macromolecules is often ef- 
ficiently described by the ratio of the mean-square radii of 
gyration of the branched and linear molecules a t  same 
values of the molecular weight 

This ratio, as defined above, is sufficient for use with ho- 
modisperse star molecules with point centers, but the scope 
of its definition has to be enlarged to accommodate 
branched molecules with a certain molecular weight distri- 
bution. Zimm and Stockmayerl3 calculated mean values 

““i\\. 
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Figure 5. The g factor as a function of the side-chain length for 
stars with large centers. The figures indicate the ratio bJb,; M ,  is 
varied according to MC1i3 = constb,. 

(g )  by averaging g, defined by eq 29, with respect to the 
molecular weight distribution of the branched samples. 
This procedure necessarily implies comparison of the di- 
mensions of the branched and linear products with identi- 
cal molecular weight distributions. Application of the (g ) 
values defined in this way to actual problems brings about 
serious difficulties, as in most cases linear and branched 
samples have vastly different molecular weight distribu- 
tions. 

The following definition appears reasonable for star mol- 
ecules from both the theoretical and practical standpoint 

where the linear chains have the length distribution of the 
branches in the star molecule; the two z-average values 
have to be taken a t  the same weight-average molecular 
weight. The g factor, so defined, can be calculated from eq 
39 of I for polydisperse branches and from eq 17 for homo- 
disperse branches, by use of 

(polydisperse branches) IJ 11 

(homodisperse branches) 

The g factor has been assumed in the past to be a unique 
function of the number of branches.13-15 Figures 5 and 6 
demonstrate, however, that in the more general case g de- 
pends also on the length of the branches and on a,  the 
probability of grafting. 

In the plot of Figure 5, the size of the spherical centers is 
assumed to increase with the molecular weight as 

b, = c ~ n s t ~ % f ~ ’ / ~  (33) 
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Figure 6. Limiting values of g as a function of the average number 
of branches for (a) stars with homodisperse branches (a  = 0.1); (b) 
regular homodisperse stars (a = 1); (c) stars with polydisperse 
branches (most-probable length distribution) (a = 1). 

In the limit of large and small central units the curves of 
Figure 5 can be easily interpreted. Large compact spheres 
have small dimensions compared with those of linear 
chains of the same molecular weight. Hence, g starts a t  a 
very low value for short chains and gradually approaches a 
limiting value for very long chains. This limiting value is 
identical for all types of central units in the star, because at 
large chain lengths weight and dimensions of the central 
unit become negligible compared with those of the branch- 
es. For stars with small central units this limiting value of g 
is approached from larger values for short branches, be- 
cause here the bond lengths of the central unit and the side 
chain units have approximately the same size, resulting in g 
factors close to 1 for very short side chains. The behavior of 
stars with moderately large centers is rather complicated 
and appears not accessible to interpretation in simple 
terms. 

The limiting g values are given by 

(polydisperse branches) 

(homodisper s e  branches) 

(34) 

(35) 

and these equations hold exactly for star molecules with 
point centers.16 

It is of interest that for large numbers of branches g de- 
pends uniquely on the number average af = f of branches 
per molecule, while a t  small f it  also depends on the proba- 
bility a. See Figure 6. 
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ABSTRACT We have analyzed theoretically the autocorrelation function and spectrum of light inelastically scat- 
tered from a dilute solution of flexible polymer chains, each of which has a small but StrOhgly scattering “label” 
conjugated to one or both ends or to the middle. Scattering from the polymer itself is nulled by refractive index 
matchhg. The label is postulated to be small enough that its influence on the hydrodynamic normal modes of the 
polymer is insignificant. Calculations indicate that intramolecular normal modes of the polymer chain, as they are 
manifested in the motion of the label, contribute strongly to the scattering spectrum a t  moderate chain lengths and 
scattering angles. 

I. Introduction 

In his fundamental paper of 1964,’ and in several later 
 one^,^,^ Pecora raised the goal of using inelastic laser light 
scattering to detect intramolecular modes of motion in 
flexible polymer chains. This goal has been steadily pur- 
sued, notably by Frederick and coworkers,P6 but the pur- 
suit has been difficult, because of the low scattering inten- 
sity contributed by the internal modes relative to transla- 
tional diffusion and the stringent requirements for very 
high polymer molecular weight and monodispersity. 

This paper presents a theoretical analysis of a new ap- 
proach to this problem. We imagine that a dense, strongly 
scattering “label” is conjugated to the polymer chain at one 
or two points and that the solvent refractive index is cho- 
sen to match that of the polymer. Then scattering arises 
only from the label, which is supposed to have a substantial 
excess polarizability relative to the solvent. At the same 
time, the label is postulated to be small enough that its in- 
fluence on the hydrodynamic normal modes of the polymer 
chain is insignificant. Our analysis of this model demon- 
strates that intramolecular normal modes of the polymer 


