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ABSTRACT: The cascade theory, known to be a powerful method when dealing with random processes, has been
extended to cover the problem of copolymeric star molecules with side chains of equal length. This has been ef-
fected by introducing a special form of correlation between probabilities in the zeroth and nth generations. Analyt-
ic formulas are derived for the apparent and true values of the weight-average molecular weight and the z averages
of the mean-square radius of gyration and the particle scattering factor. The particle scattering factors exhibit
characteristic upturns in Zimm plots; the upturn is increased with the number of side chains and is more pro-
nounced for homodisperse side chains than for side chains with a random length distribution. The envelopes of the
particle scattering factors show increasingly marked downturns at large angles of scatter for stiff chains, resulting
in typical S-shaped curves in Zimm plots. Particular attention is given to the apparent and true averages of the mo-
lecular weight and of the conformation of copolymeric stars. The resulis are expressed in terms of heterogeneity pa-
rameters P and € defined by Benoit and Froelich for block copolymers. For star molecules @ is shown to be a sim-
ple function of P and the mass fraction of the star center, while P depends on the difference between the weight-

and number-average molecular weight.

The star molecules considered in the preceding paper
(part I) are characterized by a most probable length distri-
bution for the attached side chains. In this paper the case
of homodisperse side chains is treated. Although this prob-
lem was solved approximately by Benoit,! more general re-
lationships can be obtained by an extension of the existing
cascade theory. To make this intelligible a characteristic
and slightly hidden correlation between the link probabili-
ties in star molecules may be discussed in some detail.

In the previous case of stars with most probable length
distribution for the side chains three link probabilities had
to be distinguished for the side chains: (i) the probability 3
that an s unit of the side chain is linked to another s unit of
the same chain, (ii) the probability (1 — 8) that a function-
ality of the s unit is not linked, and (iii) the probability (1
— B)p . that the s unit is linked to a unit ¢ of the star center,
where for the coupling probability p. = 1 has been as-
sumed. More generally one has p. < 1, and in such a case (1
— B)(1 = p.) indicates the probability that a fraction of (1
— p¢) of all linear s chains is not linked to the center. The

fact that the one end of the side chain is attached to the
center while the other is free implies a special correlation
between the link probabilities. In a completely random
process the two functionalities of a bifunctional unit are in-
distinguishable. In this case, however, the functionality fac-
ing the free end has the chance 8 for a link and (1 — 3) for
no reaction, and the same situation holds for any other gen-
eration of the branch that leads to the free end; the func-
tionality facing the attached end, on the other hand, has
again the probability 8 for a link to another s unit, but the
alternative is now (1 = 8)p. for the link probability with a
unit of the star center, and the same situation persists for
all higher generations of that attached branch. This type of
correlation, which is also typical for the chain process of a
free radical polymerization, has been accounted for in part
I by a special labeling of the generating functions. Yet, the
probabilities remain identical in all generations; in other
words 3 has been assumed to be independent of the num-
ber of s units between the center and an s unit selected at
random.
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For strictly or nearly homodisperse side chains (e.g.,
Poisson distribution) such an independence does not exist.
Here it is more effective to replace the link probabilities by
fixed values (no fluctuation). If for these molecules a unit is
chosen at random to furnish a root of a tree, a forest is
again obtained with subforests of c-rooted and s-rooted
trees (for an explanation of various terms and symbols
used, see part I). However, the various s-rooted trees are
not statistically equivalent but depend on whether the first
unit nearest to the star center, or the end unit of the side
chain, or say the ith s unit, counted from the center, is the
root. Again this strong correlation can be handled by label-
ing the various generating functions. This leads to the fol-
lowing generalization of the path-weighting generating
functions.

The Generating Function

As before, the component for the star center is
U = 6°0°(1 = a + alUy"V 1

where the superscript (not a power index) N denotes the
fact that a side chain of N units in length is affixed to the
center with a probability «.

For the s-rooted trees the generating function is now a
weighted sum of individual generating functions

14 1 . i
LOs = _Z UOS (2)

where the average is taken over the N different s-rooted
trees with individual generating functions

UOsi = 9@05 UlszV-l'Ulsbi“1 (3)

Here the index i in U ¢ means that the i th s unit (counted
from the star center) is the root of the tree. U#¥~% and
Uii~! are respectively the generating functions for the
first generation of branches with a free end and the end
bound to the center. Evidently, if the ith unit is a root,
there are N — i units on the branch with the free end and i
— 1 units on the branch bearing the star center.

For the first and the subsequent generations one finds
for the ¢ component

Ue = 6%°(1 — a + alp, /N (4)

For the two parts of the side chain one has the series

Upgs™ i = 00170,
Ujst-i-ji-l — eojsbrj”'st-i-i
(i=23 ..., N—-i—-1 (5
Uyl = 68"
and
i1 042 ia2
U™ = 8 " Upgy'™
. iai .8 i
L‘jsbz = QOJ Uj+1,sb1 3=
(]:2,37 ,1—2)(6)
. .S
Lri-l,sbl — 601-1 (Jic
Both recursions are readily solved, thus
. Nei 4o s
Ui = 6% (0
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iml l,il ] s
Ulsbh = 6 i Uic (8)
=1
Combination of the eq 14, 7, and 8 yields
cp € ¥ o s
Upe=86%(1-a+ allgs) (9
j=1
N
Uy = e%osi, (6% (1 — o +
N

N Nai i=1
aTT %™ y-1(TT 6% (T 6°e")] (10)
1=1

j=1 k=1

Again two superscripts are used in order to label clearly
both ends of a path.
The total path-weighting generating function is

Uy = mUy + myUp (11)

The mass fractions m. and m, follow from eq 6b of part I

by insertion of M, = M. and M, = NM, as the number-

average molecular weights of the center and of a side chain,

respectively, and the average number f = of of side chains
M afFNM.

© T M, + afNM, ’* s T M, + afNM,

The relevant physical averages are obtained from eq 11 by
differentiation at § = 1, resulting in

N
U,/ (1) = mc[c%c + fa ;%}js:l + ms[s%s +

2N-1
N ¢

i=1

Lyeos + 25 v irop + A3 (-
N i i N =

N
1)a;s¢i+,ﬂ (13)

Gaussian Chains

The z average of the apparent particle scattering factor
follows from the set of weighting functions defined in eq 33
or Part I (unless otherwise mentioned, all the equation
numbers refer to this paper). If these functions are inserted
in eq 13, one obtains

PZyaDD(e)A/Iw = ;WC{A?LIchZf'(:? + stgsgcfsfcafp1} +

- Do P
g {]V[sgszfsz [P2 + (LT—PIZJ + fw[cgcgsfcfST\]l}
(14)
where
P1 = ch [(1 - ZsN)/(l - Zs)]
_ 2Zs _ PI >
Py=1+ 1= Z (1 NZ.. (15)

The apparent molecular weight is found from the limit © —
1 of eq 15; this limit is equivalent to Z,s — 1 and Zs — 1
and, with these limiting operations, both P; and P; — N.
Thus

A[w,ann = Vnc{"”c:gc2 + A/lsgsgcosz} +
7/’75{[”5gs2[c’l]‘YV + (1 - Ol)]\f'] + A'/Icgcgs} (16)

Insertion of eq 36 of I in eq 13 gives the z average of the
mean-square radius of gyration:
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{m M, gcgsafNGm
ms[McgcgsGm + Msgs GZO] mc[‘ cgc22<52>00 +
M, 8,80 NS 0. + (SP)] + mg[ M, g,72(5%(afN +
(1 - Q)N + Mcgsgc(<sz>()c + <S2>OS)]} (17)

SRIT 2M

where
G10 = b052 + [(N - 1)/2]b82
— T+
Gy = (N—lg—(ubsz + 2(f - 1)aNG,, (18)
Stiff Side Chains

An equation for the apparent particle scattering factor is
obtained now with the set of eq 44 of I

Pz.apn(e)‘ww = WZC[M gczfc2 + M, gngsfcawa] +

Ms[MsgSZfZ(Y ;Y- Da Al)“ sz) +

~ 8

M, gcgsfcfs N :| (19)

ch[(l + 0, X0 Lh ~

Zyg

CnZl - 2 - N - 2!
5 T = z?

Cr 4

_"2____“s

3 (1= Zs)z[(l *

P
Zy—1 _
J Z N

Yy = (1 + C, XHP, -

(1 -+ Z;V)] (20)

The functions X2 and Z, are given by eq 41 of I, Cp, and
Cp, by eq 42 of I, and P; and P2 by eq 15; the other sym-
bols have the same meaning as before.

Finally, for the apparent mean-square radius of gyration,
one finds from eq 50 of I and eq 13

<Sz>z,app — <S2>Z' a‘wGauss _ <Sz>z’appnon-Gauss (21)

The first term is given by eq 17 and the correction term is

(870, app” M0 = Deta ¢ {mcMsgschl +

2MW app
H ¢ b - 1 o
msﬂ/[cgszgrc—1 + 2m M, gt [:Hz + —(f—ﬁ——)—HJ} (22)

Py
N

with
— — N
H ={N-1 - 1-0-97
q
, l—q[ 1-Q- q)”:,
Hy = (N=-1 - 1- = 23
2 = ) p Ng (23)

The constant C, is defined in eq 49 of I.

Results and Discussion

A few conclusions from the results obtained in I and in
the preceding sections of this paper are discussed here.

Effect of the Chain Number, Chain Length Distri-
bution, and Chain Stiffness. Figure 1 shows the recipro-
cal particle scattering factors as a function of h2(S2), for
some stars with point centers. All particle scattering factors
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Figure 1. Reciprocal particle scattering factors of star molecules
with 4 and 20 branches, respectively. The broken lines refer to ho-
modisperse branches and the solid ones to branches with most
probable length distribution. Curve f = 4 represents behavior of an
assembly of stars with a maximum number of 20 branches but an
average of 4 branches.

exhibit the same initial slope of 4; an upturn at large
values of the abscissa is more pronounced for stars with ho-
modisperse side chains than for side chains with a most-
probable length distribution. A similar relationship is
found for homodisperse linear polymers and for those with
the most-probable distribution, although in this case the
upturns are rather less pronounced. The upturn is also en-
hanced by increase of the number of side chains. This be-
havior is typical of the effect of branching but is often su-
perimposed on an opposite effect due to polydispersity.2—4

The curves with an average number f = af = 4 are of
special interest. Here the functionality is f = 20 but only
20% of the reactive groups of the center have reacted. The
particle scattering factor shows behavior similar to that of a
star with exactly four side chains, but is not identical with
it because of the variation in chain number of different
stars in the assembly. This observation suggests a test for
uniform grafting.

The effect of chain stiffness is seen in Figure 2 for the ex-
ample of stars with 20 side chains. The chain stiffness is
characterized by the parameter 1/¢ which indicates the
number of repeat units per persistence length. While for
Gaussian chains (1/g = 1) a continuous upturn is observed,
the corresponding particle scattering factors of stiffer
chains show the typical downturn behavior of stiff chains
in general.5-7 As long as the chain stiffness is not too high, a
characteristic S shaped curve is obtained, as confirmed ex-
perimentally.® In such cases an easy determination of the
chain stiffness will be possible; for chains with more than
100 bonds per persistence length, however, the downturn
due to chain stiffness sets in so early that difficulties of in-
terpretation similar to those for stiff linear chains®7 will
oceur.

Copolymeric Stars. If the star center is comparable in
size and mass with the mean-square radius of gyration of a
side chain and the total mass of all grafted side chains, the
star has to be considered as a copolymer, especially if the
center (microgel or latex particle) and the side chains have
different refractive index increments.

Figure 3 shows the influence of the refractive index in-
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Figure 2. Effect of chain stiffness on the reciprocal particle scat-
tering factors of star molecules bearing 20 branches. The figures
denote the number of repeat units per persistence length.

crements on the particle scattering factor for a star with a
large center (M /M, = 105, by/bs = 50, DP,s = 104). In
curve a both center and side chains have the same dn/dc.
The scattering behavior is almost competely determined by
the spherical center. Only at small angles are steeper in-
creases of P(8)~! found and these are due to the mean-
square radius of gyration of the whole molecule being larg-
er than that of the center. No detailed information can be
gained from such scattering curves. In curve b the refrac-
tive index increment of the center is v, = 0; it follows then
from eq 28 for this star that v = 1.5. Light is not scattered
by the center; the star resembles a “ghost star” where the
side chains appear to be grafted onto the surface of an in-
visible sphere. Such a star should behave as if it had the
same number of side chains but a point center. Comparison
with curve d shows that this is indeed the case.

Very strange scattering behavior is obtained if the re-
fractive index of the solvent lies between those of the two
components, because then v, and v, differ in sign. Positive
and negative terms now appear in the sum of eq 45 in I and
of eq 19; the conflicting effects make an interpretation of
the scattering curve very difficult. Curve c gives an exam-
ple; it is tempting, but unsafe, to correlate the maximum
with a characteristic length within the star molecule; clear
information on the molecular structure can scarcely be
gathered from such curves. Benoit and Froelich? discuss in
their treatment of light scattering from block copolymers a
case with an apparent negative mean-square radius of gyra-
tion. Such a case will also occur for these star molecules if
as may be seen from eq 17.

gsgc(mcMsafN + nlsMc)(Gio + <Sz>0c + <Sz>05) >

gszmsMs(G% + 2<Sz>05) + agr<:27nc[‘/[c2 <SZ>0c (24)

Apparent Molecular Weight and Mean-Square Ra-
dius of Gyration. The apparent and true weight-average
molecular weights are related by the simple equation

M apy = My + (M, — Mgl -1 (25)
where for homodisperse side chains

M, - M, = (1 — o)NM;m, (26a)

Macromolecules

250 d b
200
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Figure 3. Scattering behavior of copolymer stars composed of a
large center and 20 homodisperse branches. (a) Central unit and
repeat units of the branches have the same refractive index incre-
ment; (b) refractive index increment of the center is zero, i.e., the
refractive index of the solvent equals that of the star center; (c) re-
fractive index of the solvent is between the refractive indices of the
two components; (d) scattering behavior of a corresponding star
with point center.

and for polydisperse side chains

B+ {1-a

.IWW - Mn = —1_;-—6—

Thus, for homodisperse star molecules the correct molecu-

lar weight is obtained in any case, while for stars with poly-

disperse side chains the additional term in eq 25 does not

vanish even if a = 1. This is in agreement with the well-

known results of Bushuk and Benoit.?10 These authors ex-

press the relationship between M, ., and M, quite gener-
ally by two heterogeneity parameters P and @

A/[\V, pp = R/TW + ZP(gs - gc) + Q(gs - gc)Z (27\)
where @ is a quantitative measure of the heterogeneity in
composition, while P is related additionally to the molecu-
lar heterogeneity. For instance, one has P = 0 if the copoly-
mer is homodisperse in mass, but @ = 0.

Equation 25 can also be brought into the general form of
eq 27 with the heterogeneity parameters

P = (M, - M)m,

M my (26b)

N

(28a)
and
Q = (M, - (28b)

Equation 28b indicates that for stars the heterogeneity in
composition is directly related to the heterogeneity in
mass. Because of this direct proportionality only two mea-
surements in solvents with different refractive indices are
necessary for the stars, instead of the three solvents re-
quired in the general case of eq 27.

For practical reasons, it is advisable to select properly
chosen classes of solvents. In the one class the solvent
should have a rather low refractive index. Then v, and v,
are comparatively high and the difference between M and
My app is small and can often be neglected. In the other
class the solvent should have a refractive index very close
to that of the central unit so that v. becomes zero. If, in this

Mym} = Pm,
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Figure 4. Apparent and true mean-square radii of gyration as a
function of the apparent or true molecular weight of 20-star mole-
cules. Solid lines correspond to branches with most-probable
length distribution and broken lines represent homodisperse
branches. The calculations are performed for M./M, = 105 and
be/bs = 50.

case, v is used instead of the average index increment », the
molecular weight and the mean-square radius of gyration
of the grafted side chains are obtained (because m cancels
out). Figure 4 shows the dependence of the mean-square
radii of gyration on the molecular weight for the two cases.
The dotted lines correspond to the homodisperse stars,
while the full lines give the behavior of stars with polydis-
perse side chains. As expected, the mean-square radii of
the polydisperse stars are larger than those of the homo-
disperse stars of the same molecular weight.

The larger apparent mean-square radii of gyration in sol-
vents in which the star center is not visible appear surpris-
ing, but this behavior has a simple explanation. The two
lines for the homodisperse and polydisperse stars end in a
common point indicated by the open circle in Figure 4.
This point represents the mean-square radius of gyration
of 20 small repeat units of type s distributed at random on
the surface of the invisible sphere of the center and resem-
bles, in some respects, a hollow sphere. The full circle in
Figure 5, however, represents the mean-square radius of
gyration of the same 20 units distributed on the surface of a
visible sphere. Since for a hollow sphere (S2) = r211 ig
larger than for a compact sphere, (S2) = 3% r212 of the
same radius r, it is clear that there should be a similar dif-
ference for the two star models. This difference disappears
for very long side chains because then the mass and the size
of the center are negligible compared with the mass and
size of the grafted side chains.

The g Factor. Branching in macromolecules is often ef-
ficiently described by the ratio of the mean-square radii of
gyration of the branched and linear molecules at same
values of the molecular weight

g = <Sz>branched/<sz>1inear (29)

This ratio, as defined above, is sufficient for use with ho-
modisperse star molecules with point centers, but the scope
of its definition has to be enlarged to accommodate
branched molecules with a certain molecular weight distri-
bution. Zimm and Stockmayer!3 calculated mean values
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Figure 5. The g factor as a function of the side-chain length for
stars with large centers. The figures indicate the ratio b./bs; M. is
varied according to M /3 = constb..

(g) by averaging g, defined by eq 29, with respect to the
molecular weight distribution of the branched samples.
This procedure necessarily implies comparison of the di-
mensions of the branched and linear products with identi-
cal molecular weight distributions. Application of the (g}
values defined in this way to actual problems brings about
serious difficulties, as in most cases linear and branched
samples have vastly different molecular weight distribu-
tions.

The following definition appears reasonable for star mol-
ecules from both the theoretical and practical standpoint

g = <Sz>z,branched/<s2>z, linear (30)

where the linear chains have the length distribution of the
branches in the star molecule; the two z-average values
have to be taken at the same weight-average molecular
weight. The g factor, so defined, can be calculated from eq
39 of I for polydisperse branches and from eq 17 for homo-
disperse branches, by use of

b2 M. bt
<Sz>z linear — L st £ [2 + (f - 1) a]
: i aa-
( B) 1)

(polydisperse branches)

2 2
<Sz>z, linear — 25_ M = b—s_

6 M, 6

8

N[l - (f - 1)01] (32)
(homodisperse branches)

The g factor has been assumed in the past to be a unique
function of the number of branches.13-1% Figures 5 and 6
demonstrate, however, that in the more general case g de-
pends also on the length of the branches and on «, the
probability of grafting.

In the plot of Figure 5, the size of the spherical centers is
assumed to increase with the molecular weight as

b, = constM,'/? (33)
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Figure 6. Limiting values of g as a function of the average number
of branches for (a) stars with homodisperse branches (o« = 0.1); (b)

regular homodisperse stars (a = 1); (c¢) stars with polydisperse
branches (most-probable length distribution) (« = 1).

In the limit of large and small central units the curves of
Figure 5 can be easily interpreted. Large compact spheres
have small dimensions compared with those of linear
chains of the same molecular weight. Hence, g starts at a
very low value for short chains and gradually approaches a
limiting value for very long chains, This limiting value is
identical for all types of central units in the star, because at
large chain lengths weight and dimensions of the central
unit become negligible compared with those of the branch-
es. For stars with small central units this limiting value of g
is approached from larger values for short branches, be-
cause here the bond lengths of the central unit and the side
chain units have approximately the same size, resulting in g
factors close to 1 for very short side chains. The behavior of
stars with moderately large centers is rather complicated
and appears not accessible to interpretation in simple
terms.

Macromolecules

The limiting g values are given by

1+ (f- Do
£ AR E - P (84
(polydisperse branches)
1+ S(f - 1)(1 (35)

£ T+ (F- Dap
(homodisperse branches)

and these equations hold exactly for star molecules with
point centers.16

It is of interest that for large numbers of branches g de-
pends uniquely on the number average of = f of branches
per molecule, while at small f it also depends on the proba-
bility . See Figure 6.
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ABSTRACT: We have analyzed theoretically the autocorrelation function and spectrum of light inelastically scat-
tered from a dilute solution of flexible polymer chains, each of which has a small but strongly scattering “label”
conjugated to one or both ends or to the middle. Scattering from the polymer itself is nulled by refractive index
matching. The label is postulated to be small enough that its influence on the hydrodynamic normal modes of the
polymer is insignificant. Calculations indicate that intramolecular normal modes of the polymer chain, as they are
manifested in the motion of the label, contribute strongly to the scattering spectrum at moderate chain lengths and

scattering angles.

I. Introduction

In his fundamental paper of 1964,! and in several later
ones,2? Pecora raised the goal of using inelastic laser light
scattering to detect intramolecular modes of motion in
flexible polymer chains. This goal has been steadily pur-
sued, notably by Frederick and coworkers,*€ but the pur-
suit has been difficult, because of the low scattering inten-
sity contributed by the internal modes relative to transla-
tional diffusion and the stringent requirements for very
high polymer molecular weight and monodispersity.

This paper presents a theoretical analysis of a new ap-
proach to this problem. We imagine that a dense, strongly
scattering “label” is conjugated to the polymer chain at one
or two points and that the solvent refractive index is cho-
sen to match that of the polymer. Then scattering arises
only from the label, which is supposed to have a substantial
excess polarizability relative to the solvent. At the same
time, the label is postulated to be small enough that its in-
fluence on the hydrodynamic normal modes of the polymer
chain is insignificant. Our analysis of this model demon-
strates that intramolecular normal modes of the polymer



